期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:133
Bounding the degree of Belyi polynomials
Article
Rodriguez, Jose
关键词: Belyi;    Dessin d'enfant;    Newton polygon;    p-Adics;    Height functions;    Heights;    Belyi height;    Belyi functions;   
DOI  :  10.1016/j.jnt.2012.12.019
来源: Elsevier
PDF
【 摘 要 】

Text. Belyi's theorem states that a Riemann surface X, as an algebraic curve, is defined over (Q) over bar if and only if there exists a holomorphic function B taking X to (PC)-C-1 with at most three critical values {0, 1, infinity}. By restricting to the case where X = (PC)-C-1 and our holomorphic functions are Belyi polynomials, for an algebraic number lambda, we define a Belyi height H(lambda) to be the minimal degree of the set of Belyi polynomials with B(lambda) is an element of {0, 1}. We prove for non-zero lambda with non-zero p-adic valuation, the Belyi height of lambda is greater than or equal to p using the combinatorics of Newton polygons. We also give examples of algebraic numbers with relatively low height and show that our bounds are sharp. (c) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2012_12_019.pdf 221KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:0次