期刊论文详细信息
| JOURNAL OF NUMBER THEORY | 卷:171 |
| On the convex hull of the points on multivariate modular hyperbolas | |
| Article | |
| Shparlinski, Igor E.1  | |
| [1] Univ New South Wales, Dept Pure Math, Sydney, NSW 2052, Australia | |
| 关键词: Modular hyperbola; Convex hull; | |
| DOI : 10.1016/j.jnt.2016.07.011 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
Given integers a, m >= 1 with gcd(a, m) = 1 and s >= 2, let H-s(a, m) be the following set of integral points H-s(a, m) = {(x(1),..., x(s)) is an element of Z(s) : x(1) ... x(s) equivalent to a (mod m), 1 <= x(1,)..., x(s) <= m - 1} We obtain upper bounds on the number of vertices of the convex hull of H-s(a, m) . These bounds generalise those known for s = 2, although our approach is different. (C) 2016 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jnt_2016_07_011.pdf | 254KB |
PDF