期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:131
The average behavior of the coefficients of Dedekind zeta function over square numbers
Article
Lue, Guangshi1  Yang, Zhishan1 
[1] Shandong Univ, Dept Math, Jinan 250100, Shandong, Peoples R China
关键词: Coefficients of Dedekind zeta function;    Galois field;    Divisor problem;   
DOI  :  10.1016/j.jnt.2011.01.018
来源: Elsevier
PDF
【 摘 要 】

In this paper, we are interested in the average behavior of the coefficients of Dedekind zeta function over square numbers. In Galois fields of degree d which is odd, when l >= 1 is an integer, we have Sigma(n <= x)a(n(2))(l) = xP(m) (logx) + O(x(1)-3/md+6+epsilon), where m = ((d + 1)/2)(l)d(l-1), P(m)(t) is a polynomial in t of degree m - 1, and epsilon > 0 is an arbitrarily small constant. By using our method, we also rectify the main terms of the k-dimensional divisor problem in some Galois fields over square numbers established by Deza and Varukhina (2008) [DV]. (C) 2011 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2011_01_018.pdf 182KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:0次