期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:148
Injectivity of the specialization homomorphism of elliptic curves
Article
Gusic, Ivica1  Tadic, Petra2 
[1] Univ Zagreb, Fac Chem Engn & Technol, Zagreb 10000, Croatia
[2] Juraj Dobrila Univ Pula, Dept Econ & Tourism, Pula 52100, Croatia
关键词: Elliptic curve;    Specialization homomorphism;    Number field;    Class number;    Quadratic field;    Cubic field;    Rank;    Pari;    Magma;   
DOI  :  10.1016/j.jnt.2014.09.023
来源: Elsevier
PDF
【 摘 要 】

Let E: y(2) = x(3)+Ax(2)+Bx+C be a nonconstant elliptic curve over Q(t) with at least one nontrivial Q(t)-rational 2-torsion point. We describe a method for finding t(0) is an element of Q for which the corresponding specialization homomorphism t bar right arrow t(0) is an element of Q is injective. The method can be directly extended to elliptic curves over K(t) for a number field K of class number 1, and in principal for arbitrary number field K. One can use this method to calculate the rank of elliptic curves over Q(t) of the form as above, and to prove that given points are free generators. In this paper we illustrate it on some elliptic curves over Q(t) from an article by Mestre. (C) 2014 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2014_09_023.pdf 404KB PDF download
  文献评价指标  
  下载次数:16次 浏览次数:2次