期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:148
A Selberg trace formula for hypercomplex analytic cusp forms
Article
Grob, D.1  Krausshar, R. S.2 
[1] Rhein Westfal TH Aachen, Lehrstuhl Math, D-52056 Aachen, Germany
[2] Univ Erfurt, Erziehungswissensch Fak, D-99089 Erfurt, Germany
关键词: Selberg trace formula;    Dimension formulas for modular forms;    Hypercomplex cusp forms;    Hyperbolic harmonic functions;    Dirac type operators;    Clifford algebras;   
DOI  :  10.1016/j.jnt.2014.09.002
来源: Elsevier
PDF
【 摘 要 】

A breakthrough in developing a theory of hypercomplex analytic modular forms over Clifford algebras has been the proof of the existence of non-trivial cusp forms for important discrete arithmetic subgroups of the Ahlfors-Vahlen group. Hypercomplex analytic modular forms in turn also include Maass forms associated to particular eigenvalues as special cases. In this paper we establish a Selberg trace formula for this new class of automorphic forms. In particular, we show that the dimension of the space of hypercomplex-analytic cusp forms is finite. Finally, we describe the space of Eisenstein series and give a dimension formula for the complete space of k-holomorphic Cliffordian modular forms. (C) 2014 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2014_09_002.pdf 516KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:0次