期刊论文详细信息
| JOURNAL OF NUMBER THEORY | 卷:157 |
| Rational period functions in higher level cases | |
| Article | |
| Choi, So Young1  Kim, Chang Heon2  | |
| [1] Dongguk Univ Gyeongju, Dept Math Educ, Gyeongju 780714, South Korea | |
| [2] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea | |
| 关键词: Period functions; Modular integrals; Hecke operators; | |
| DOI : 10.1016/j.jnt.2015.04.021 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
Extending Knopp's results [9,10] we investigate examples and properties of rational period functions in higher level cases, including location of poles and behavior under the action of Hecke operators. More precisely, we prove that a rational period function may have poles only at 0 or at real quadratic irrationalities. Moreover by applying the action of Hecke operators we prove that for positive odd integer k and p is an element of {2, 3}, the space of all rational period functions of weight 2k for r(0)(+)(p) is infinite dimensional. (C) 2015 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jnt_2015_04_021.pdf | 332KB |
PDF