期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:229
Arithmetic constraints of polynomial maps through discrete logarithms
Article
Reis, Lucas1 
[1] Univ Fed Minas Gerais, Dept Matemat, BR-30270901 Belo Horizonte, MG, Brazil
关键词: Finite fields;    Discrete logarithm;    Polynomial maps;    Cyclotomic cosets;   
DOI  :  10.1016/j.jnt.2020.10.015
来源: Elsevier
PDF
【 摘 要 】

Let q be a prime power, let F-q be the finite field with q elements and let theta be a generator of the cyclic group Fq*. For each a is an element of F-q*, let log theta a be the unique integer i is an element of{1, ... , q -1} such that a = theta i. Given polynomials P-1, . . . , P-k is an element of F-q[x] and divisors 1 < d1, . . . , dk of q- 1, we discuss the distribution of the functions Fi : y (sic) log theta Pi(y) (mod di), over the set Fq \ boolean OR ki=1{y is an element of Fq | Pi(y) = 0}. Our main result entails that, under a natural multiplicative condition on the pairs (di, Pi), the functions Fi are asymptotically independent. We also provide some applications that, in particular, relates to past work. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2020_10_015.pdf 659KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次