期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:229
The asymptotic distribution of the rank for unimodal sequences
Article
Bringmann, Kathrin1  Jennings-Shaffer, Chris1  Mahlburg, Karl2 
[1] Univ Cologne, Dept Math & Comp Sci, Weyertal 86-90, D-50931 Cologne, Germany
[2] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
关键词: Integer partitions;    Unimodal sequences;    Asymptotics;    Distributions;    Probabilistic methods;    Modular forms;    Mock modular forms;   
DOI  :  10.1016/j.jnt.2020.11.016
来源: Elsevier
PDF
【 摘 要 】

We study the asymptotic behavior of the rank statistic for unimodal sequences. We use analytic techniques involving asymptotic expansions in order to prove asymptotic formulas for the moments of the rank. Furthermore, when appropriately normalized, the values of the unimodal rank asymptotically follow a logistic distribution. We also prove similar results for Durfee unimodal sequences and semi-strict unimodal sequences, with the only major difference being that the (normalized) rank for semistrict unimodal sequences has a distributional limit of a point mass probability distribution. (c) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2020_11_016.pdf 874KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次