期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:160
On the normal number of prime factors of φ(n) subject to certain congruence conditions
Article
Mkaouar, M.1  Wannes, W.1 
[1] Fac Sci Sfax, Sfax 3000, Tunisia
关键词: Sum-of-digits function;    Erdos-Kac theorem;    Normal order;    Euler function;   
DOI  :  10.1016/j.jnt.2015.09.009
来源: Elsevier
PDF
【 摘 要 】

Let q >= 2 be an integer and S-q(n) denote the sum of the digits in base q of the positive integer n. It is proved that for every real number a and beta with alpha < beta, lim(x ->+infinity) 1/x #{n <= x : alpha <= v((phi(n)) - 1/2b (log log n)(2)/ 1/root 3h (log log n)(3/2) <= beta = 1/root 2 pi integral(beta)(alpha) e(-t2/2) dt, where v(n) is either (omega) over tilde (n) or (Omega) over tilde (n), the number of distinct prime factors and the total number of prime factors p of a positive integer n such that S-q(p) a mod b (a, b is an element of Z, b >= 2). This extends the results known through the work of P. Erdos and C. Pomerance, M.R. Murty and V.K. Murty to primes under digital constraint. (C) 2015 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2015_09_009.pdf 329KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次