| JOURNAL OF NUMBER THEORY | 卷:217 |
| Small doubling in prime-order groups: From 2.4 to 2.6 | |
| Article | |
| Lev, Vsevolod F.1  Shkredov, Ilya D.2  | |
| [1] Univ Haifa, Dept Math, IL-36006 Tivon, Israel | |
| [2] Steklov Math Inst, Ul Gubkina 8, Moscow 119991, Russia | |
| 关键词: Sumset; Additive combinatorics; Small doubling; | |
| DOI : 10.1016/j.jnt.2020.05.009 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
Improving upon the results of Freiman and Candela-Serra-Spiegel, we show that for a non-empty subset A subset of F-p with p prime and vertical bar A vertical bar < 0.0045p, (i) if vertical bar A + A vertical bar < 2.59 vertical bar A vertical bar - 3 and vertical bar A vertical bar > 100, then A is contained in an arithmetic progression of size vertical bar A + A vertical bar - vertical bar A vertical bar + 1, and (ii) if vertical bar A - A vertical bar < 2.6 vertical bar A vertical bar-3, then A is contained in an arithmetic progression of size vertical bar A - A vertical bar - vertical bar A vertical bar + 1. The improvement comes from using the properties of higher energies. (C) 2020 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jnt_2020_05_009.pdf | 306KB |
PDF