期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:96
Fast computation of the biquadratic residue symbol
Article
Weilert, A
关键词: GCD calculation;    Euclidean algorithm;    reciprocity law;    power residue symbol;    biquadratic residue symbol;    Jacobi symbol;   
DOI  :  10.1006/jnth.2002.2783
来源: Elsevier
PDF
【 摘 要 】

This article describes an asymptotically fast algorithm for the computation of the biquadratic residue symbol. The algorithm achieves a running time of O(n(log n)(2)log log n) for Gaussian integers bounded by 2 in the norm. Our algorithm is related to an asymptotically fast GCD computation in Z[i] which uses the technique of a controlled Euclidean descent in Z[i]. At first, we calculate a Euclidean descent with suitable Euclidean steps x(j-1) = q(j)x(j) + x(j+1) storing the q(j)'s for later use. Then we calculate the biquadratic residue symbol of x(0), x(1) from the quotient sequence in linear time in the length of the q(j)'s. (C) 2002 Elsevier Science (USA).

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1006_jnth_2002_2783.pdf 189KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:2次