期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:214
Realizing Artin-Schreier covers of curves with minimal Newton polygons in positive characteristic
Article
Booher, Jeremy1  Pries, Rachel2 
[1] Univ Canterbury, Sch Math & Stat, Christchurch 8140, New Zealand
[2] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
关键词: Curve;    Jacobian;    Positive characteristic;    Artin-Schreier cover;    Wild ramification;    Zeta function;    Newton polygon;    Exponential sums;    p-rank;    Formal patching;   
DOI  :  10.1016/j.jnt.2020.04.010
来源: Elsevier
PDF
【 摘 要 】

Suppose X is a smooth projective connected curve defined over an algebraically closed field k of characteristic p > 0 and B subset of X(k) is a finite, possibly empty, set of points. The Newton polygon of a degree p Galois cover of X with branch locus B depends on the ramification invariants of the cover. When X is ordinary, for every possible set of branch points and ramification invariants, we prove that there exists such a cover whose Newton polygon is minimal or close to minimal. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2020_04_010.pdf 325KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次