期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:131
On the Q-linear independence of the sums Σn=1∞σk(n)/n!
Article
Deajim, Abdulaziz2  Siksek, Samir1 
[1] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
[2] King Khalid Univ, Dept Math, Abha, Saudi Arabia
关键词: Irrationality;    Linear independence;    Series;   
DOI  :  10.1016/j.jnt.2010.11.009
来源: Elsevier
PDF
【 摘 要 】

Let sigma(k)(n) denote the sum of the k-th powers of the positive divisors of n. Erdos and Kac conjectured that the sum alpha(k) = Sigma(infinity)(n=1) sigma(k)(n)/n! is irrational for k >= 1. This is known to be true for k = 1, 2 and 3. Fix r >= 1. In this article we give a precise criterion for 1, alpha(1), ..., alpha(r) to be Q-linearly independent, assuming a standard conjecture of Schinzel on the prime values taken by a family of polynomials. We have verified our criterion for r = 50. (C) 2011 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2010_11_009.pdf 122KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:0次