期刊论文详细信息
JOURNAL OF NUMBER THEORY | 卷:190 |
Tame kernels of cubic and sextic fields | |
Article | |
Zhou, Haiyan1  Liang, Zhibin2  | |
[1] Nanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 810023, Jiangsu, Peoples R China | |
[2] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China | |
关键词: Cubic fields; Sextic fields; Class groups; Tame kernels; | |
DOI : 10.1016/j.jnt.2018.01.020 | |
来源: Elsevier | |
【 摘 要 】
Let K be a non-Galois cubic field, and let F denote the normal closure of K/Q or a sextic cyclic field. In this paper, we establish some relations between the p-rank of K2OK (resp. K2OF) and the p-rank of the ideal class groups of some subfields of K(zeta(p)) (resp. F(zeta(p)). In the case of p = 3, we obtain estimates for the p-ranks of tame kernels K2OK (resp. K2OF). (C) 2018 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jnt_2018_01_020.pdf | 265KB | download |