期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:131
Arakelov theory of noncommutative arithmetic curves
Article
Borek, Thomas
关键词: Orders;    Semisimple algebras;    Arakelov theory;    Arithmetic curves;    Heights;   
DOI  :  10.1016/j.jnt.2010.09.002
来源: Elsevier
PDF
【 摘 要 】

The purpose of this article is to initiate Arakelov theory in a noncommutative setting. More precisely, we are concerned with Arakelov theory of noncommutative arithmetic curves. A noncommutative arithmetic curve is the spectrum of a Z-order O in a finite-dimensional semisimple Q-algebra. Our first main result is an arithmetic Riemann-Roch formula in this setup. We proceed with introducing the Grothendieck group (K) over cap (0)(O) of arithmetic vector bundles on a noncommutative arithmetic curve SpecO and show that there is a uniquely determined degree map (deg) over cap (O) : (K) over cap (0)(O) -> R, which we then use to define a height function H(O). We prove a duality theorem for the height H(O). (C) 2010 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2010_09_002.pdf 219KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次