期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:199
Types of linkage of quadratic Pfister forms
Article
Chapman, Adam1  Dolphin, Andrew2 
[1] Tel Hai Acad Coll, Dept Comp Sci, IL-12208 Upper Galilee, Israel
[2] Univ Antwerp, Dept Wiskunde Informat, Antwerp, Belgium
关键词: Kato-Milne cohomology;    Fields of positive characteristic;    Quadratic forms;    Pfister forms;    Quaternion algebras;    Linkage;   
DOI  :  10.1016/j.jnt.2018.11.017
来源: Elsevier
PDF
【 摘 要 】

Given a field F of positive characteristic p, theta is an element of H-p(n-1)(F) and beta,gamma is an element of Fx, we prove that if the symbols theta <^> d beta/beta and theta <^> d gamma/gamma in H-p(n)(F) share the same factors in H-p(1) (F) then the symbol theta <^> d beta/beta <^>d gamma/gamma in H-p(n+1)(F) is trivial. We conclude that when p = 2, every two totally separably (n - 1)-linked n-fold quadratic Pfister forms are inseparably (n - 1)-linked. We also describe how to construct non-isomorphic n-fold Pfister forms which are totally separably (or inseparably) (n - 1)-linked, i.e. share all common (n 1)-fold quadratic (or bilinear) Pfister factors. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2018_11_017.pdf 201KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次