期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:204
A Tate duality theorem for local Galois symbols II; The semi-abelian case
Article
Gazaki, Evangelia1 
[1] Univ Michigan, Dept Math, 3823 East Hall,530 Church St, Ann Arbor, MI 48109 USA
关键词: Semi-abelian varieties;    Somekawa K-groups;    Galois cohomology;    Local fields;   
DOI  :  10.1016/j.jnt.2019.04.017
来源: Elsevier
PDF
【 摘 要 】

This paper is a continuation to [Gaz17]. For every integer n >= 1, we consider the generalized Galois symbol K(k; G(1), G(2))/n ->(sn) H-2 (k, G(1)[n]circle times G(2)[n]), where k is a finite extension of Q(p), G(1), G(2) are semi-abelian varieties over k and K(k; G(1), G(2) ) is the Somekawa K-group attached to G(1), G(2). Under some mild assumptions, we describe the exact annihilator of the image of s(n) under the Tate duality perfect pairing, H-2 (k, G(1)[n]circle times G(2)[n])X H-0 (k,Hom(G(1)[n]circle times G(2) [n], mu(n)))-> Z/n. An important special case is when both G(1), G(2) are abelian varieties with split semistable reduction. In this case we prove a finiteness result, which gives an application to zero-cycles on abelian varieties and products of curves. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2019_04_017.pdf 516KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:0次