| JOURNAL OF NUCLEAR MATERIALS | 卷:469 |
| Analytical model of the effect of misfit dislocation character on the bubble-to-void transition in metals | |
| Article | |
| Martinez, Enrique1  Schwen, D.2  Hetherly, J.1  Caro, A.1  | |
| [1] Los Alamos Natl Lab, Div Mat Sci & Technol, MST 8, Los Alamos, NM 87545 USA | |
| [2] Idaho Natl Lab, Fuels Modeling & Simulat, Idaho Falls, ID 83415 USA | |
| 关键词: Segregation; Diffusion; Irradiation; | |
| DOI : 10.1016/j.jnucmat.2015.11.046 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
This paper addresses the role of misfit dislocations in the nucleation and growth of nanoscale He bubbles at interfaces. In a recent work, we studied the nanoscale effects on the capillarity equation and on equilibrium conditions. We proposed an expression for surface energy and for the equation of state, EOS, for He in bubbles, which have a size dependence that captures the role of the interface forces, which become relevant at the nanoscale. Here we determine the EOS for several twist grain boundaries in Fe and Cu and incorporate these results into the rate equation that determines the bubble-to-void transition, focusing on the influence of interface dislocations on the evaporation rate of vacancies. We find a significant effect of the magnitude of the Burgers vector of the dislocations on the critical radius for the transition. These results give a quantitative way to characterize grain boundaries in their ability to capture He and alter the onset of swelling. (C) 2015 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jnucmat_2015_11_046.pdf | 1447KB |
PDF