期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:67
The asymptotic loss of information for grouped data
Article
Felsenstein, K
关键词: asymptotically optimal discretization;    grouped data;    Kullback-Leibler distance;    optimal quantizer;    optimal design;   
DOI  :  10.1006/jmva.1998.1759
来源: Elsevier
PDF
【 摘 要 】

We study the loss of information (measured in terms of the Kullback-Leibler distance) caused by observing grouped data (observing only a discretized version of a continuous random variable). We analyze the asymptotical behaviour of the loss of information as the partition becomes finer. In the case of a univariate observation, we compute the optimal rate of convergence and characterize asymptotically optimal partitions (into intervals). In the multivariate case we derive the asymptotically optimal regular sequences of partitions. Furthermore, we compute the asymptotically optimal transformation of the data, when a sequence of partitions is given. Examples demonstrate the efficiency of the suggested discretizing strategy even for few intervals. (C) 1998 Academic Press

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1006_jmva_1998_1759.pdf 391KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:0次