期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:92
A generalized Mahalanobis distance for mixed data
Article
de Leon, AR ; Carrière, KC
关键词: latent variable models;    maximum likelihood;    measurement level;    multivariate normal distribution;    polychoric and polyserial correlations;    probit models;   
DOI  :  10.1016/j.jmva.2003.08.006
来源: Elsevier
PDF
【 摘 要 】

A distance for mixed nominal, ordinal and continuous data is developed by applying the Kullback-Leibler divergence to the general mixed-data model, an extension of the general location model that allows for ordinal variables to be incorporated in the model. The distance obtained can be considered as a generalization of the Mahalanobis distance to data with a mixture of nominal, ordinal and continuous variables. Moreover, it includes as special cases previous Mahalanobis-type distances developed by Bedrick et al. (Biometrics 56 (2000) 394) and Bar-Hen and Daudin (J. Multivariate Anal. 53 (1995) 332). Asymptotic results regarding the maximum likelihood estimator of the distance are discussed. The results of a simulation study on the level and power of the tests are reported and a real-data example illustrates the method. (C) 2003 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2003_08_006.pdf 275KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次