期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:101
On asymptotic normality of sequential LS-estimate for unstable autoregressive process AR(2)
Article
Galtchouk, Leonid1  Konev, Victor2 
[1] Strasbourg Univ, IRMA, Dept Math, F-67084 Strasbourg, France
[2] Tomsk VV Kuibyshev State Univ, Dept Appl Math & Cybernet, Tomsk 634050, Russia
关键词: Autoregressive process;    Least squares estimate;    Sequential estimation;    Asymptotic normality;   
DOI  :  10.1016/j.jmva.2010.07.009
来源: Elsevier
PDF
【 摘 要 】

For estimating parameters in an unstable AR(2) model, the paper proposes a sequential least squares estimate with a special stopping time defined by the trace of the observed Fisher information matrix. It is shown that the sequential LSE is asymptotically normally distributed in the stability region and on its boundary in contrast to the usual LSE, having six different types of asymptotic distributions on the boundary depending on the values of the unknown parameters. The asymptotic behavior of the stopping time is studied. (C) 2010 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2010_07_009.pdf 545KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次