期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:135
Robust Generalized Empirical Likelihood for heavy tailed autoregressions with conditionally heteroscedastic errors
Article
Hill, Jonathan B.
关键词: Empirical Likelihood;    Heavy tails;    Autoregression;    Redescending transformation;    Tail trimming;    Robust estimation;   
DOI  :  10.1016/j.jmva.2014.12.008
来源: Elsevier
PDF
【 摘 要 】

We present a robust Generalized Empirical Likelihood estimator and confidence region for the parameters of an autoregress ion that may have a heavy tailed heteroscedastic error. The estimator exploits two transformations for heavy tail robustness: a redescending transformation of the error that robustifies against innovation outliers, and weighted least squares instruments that ensure robustness against heavy tailed regressors. Our estimator is consistent for the true parameter and asymptotically normally distributed irrespective of heavy tails. (C) 2014 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2014_12_008.pdf 727KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:0次