期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:140
Multiple hidden Markov models for categorical time series
Article
Colombi, R.1  Giordano, S.2 
[1] Univ Bergamo, Dept Engn, Bergamo, Italy
[2] Univ Calabria, Dept Econ Stat & Finance, I-87030 Commenda Di Rende, Italy
关键词: Conditional independence;    Granger noncausality;    Graphical models;    Marginal models;    Markov properties;    Multivariate Markov chains;   
DOI  :  10.1016/j.jmva.2015.04.002
来源: Elsevier
PDF
【 摘 要 】

We introduce multiple hidden Markov models (MHMMs) where a multivariate categorical time series depends on a latent multivariate Markov chain. MHMMs provide an elegant framework for specifying various independence relationships between multiple discrete time processes. These independencies are interpreted as Markov properties of a mixed graph and a chain graph associated respectively to the latent and observation components of the MHMM. These Markov properties are also translated into zero restrictions on the parameters of marginal models for the transition probabilities and the distributions of observable variables given the latent states. (C) 2015 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2015_04_002.pdf 539KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次