期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:174
A bootstrap-based KPSS test for functional time series
Article
Chen, Yichao1  Pun, Chi Seng1 
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore 637371, Singapore
关键词: Asymptotic validity;    Bootstrap;    Bootstrap validity on average;    Functional time series;    Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests;    Moving block bootstrap;   
DOI  :  10.1016/j.jmva.2019.104535
来源: Elsevier
PDF
【 摘 要 】

In this study, we examine bootstrap methods to construct a generalized KPSS test for functional time series. Bootstrap-based functional testing provides an intuitive and efficient estimation of the distribution of the generalized KPSS test statistic and is capable of achieving non-trivial powers against many alternative hypotheses. We derive the asymptotic distribution of the simple bootstrap-based KPSS test statistic for functional time series, which proves the bootstrap validity on average. Simulation studies are then conducted to examine the performance of the proposed KPSS tests in small and moderate sample sizes. The results demonstrate that the bootstrap-based functional KPSS test has good empirical size and power. Moreover, its implementation is more efficient than the existing KPSS test for functional time series. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2019_104535.pdf 479KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:1次