期刊论文详细信息
| JOURNAL OF MULTIVARIATE ANALYSIS | 卷:185 |
| Clustering by principal component analysis with Gaussian kernel in high-dimension, low-sample-size settings | |
| Article | |
| Nakayama, Yugo1  Yata, Kazuyoshi2  Aoshima, Makoto2  | |
| [1] Kyoto Univ, Grad Sch Informat, Kyoto, Japan | |
| [2] Univ Tsukuba, Inst Math, Tsukuba, Ibaraki 3058571, Japan | |
| 关键词: HDLSS; Non-linear PCA; PC score; Radial basis function kernel; Spherical data; | |
| DOI : 10.1016/j.jmva.2021.104779 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
In this paper, we consider clustering based on the kernel principal component analysis (KPCA) for high-dimension, low-sample-size (HDLSS) data. We give theoretical reasons why the Gaussian kernel is effective for clustering high-dimensional data. In addition, we discuss a choice of the scale parameter yielding a high performance of the KPCA with the Gaussian kernel. Finally, we test the performance of the clustering by using microarray data sets. (C) 2021 The Author(s). Published by Elsevier Inc.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jmva_2021_104779.pdf | 1597KB |
PDF