期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:185
Clustering by principal component analysis with Gaussian kernel in high-dimension, low-sample-size settings
Article
Nakayama, Yugo1  Yata, Kazuyoshi2  Aoshima, Makoto2 
[1] Kyoto Univ, Grad Sch Informat, Kyoto, Japan
[2] Univ Tsukuba, Inst Math, Tsukuba, Ibaraki 3058571, Japan
关键词: HDLSS;    Non-linear PCA;    PC score;    Radial basis function kernel;    Spherical data;   
DOI  :  10.1016/j.jmva.2021.104779
来源: Elsevier
PDF
【 摘 要 】

In this paper, we consider clustering based on the kernel principal component analysis (KPCA) for high-dimension, low-sample-size (HDLSS) data. We give theoretical reasons why the Gaussian kernel is effective for clustering high-dimensional data. In addition, we discuss a choice of the scale parameter yielding a high performance of the KPCA with the Gaussian kernel. Finally, we test the performance of the clustering by using microarray data sets. (C) 2021 The Author(s). Published by Elsevier Inc.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2021_104779.pdf 1597KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:1次