期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:101
Semiparametric Bayesian measurement error modeling
Article
Casanova, Maria P.2  Iglesias, Pilar3  Bolfarine, Heleno4  Salinas, Victor H.1  Pena, Alexis3 
[1] Univ Santiago Chile, Fac Ciencia, Dept Matemat & Ciencia Computac, Santiago, Chile
[2] Univ Concepcion, Fac Ciencias Fis & Matemat, Dept Estadist, Concepcion, Chile
[3] Pontificia Univ Catolica Chile, Fac Matemat, Dept Estadist, Santiago, Chile
[4] Univ Sao Paulo, Inst Matemat & Estatist, BR-05508 Sao Paulo, Brazil
关键词: Classical measurement error model;    Hierarchical elliptical model;    Posterior distribution;    Dirichlet process;    Gibbs sampling;   
DOI  :  10.1016/j.jmva.2009.11.004
来源: Elsevier
PDF
【 摘 要 】

This work presents a Bayesian semiparametric approach for dealing with regression models where the covariate is measured with error. Given that (1) the error normality assumption is very restrictive, and (2) assuming a specific elliptical distribution for errors (Student-t for example), may be somewhat presumptuous; there is need for more flexible methods, in terms of assuming only symmetry of errors (admitting unknown kurtosis). In this sense, the main advantage of this extended Bayesian approach is the possibility of considering generalizations of the elliptical family of models by using Dirichlet process priors in dependent and independent situations. Conditional posterior distributions are implemented, allowing the use of Markov Chain Monte Carlo (MCMC), to generate the posterior distributions. An interesting result shown is that the Dirichlet process prior is not updated in the case of the dependent elliptical model. Furthermore, an analysis of a real data set is reported to illustrate the usefulness of our approach, in dealing with outliers. Finally, semiparametric proposed models and parametric normal model are compared, graphically with the posterior distribution density of the coefficients. (C) 2009 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2009_11_004.pdf 1197KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次