期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:185
Dependence structure estimation using Copula Recursive Trees
Article
Laverny, Oskar1  Masiello, Esterina1  Maume-Deschamps, Veronique1  Rulliere, Didier2 
[1] Univ Claude Bernard Lyon 1, Univ Lyon, CNRS UMR 5208, Inst Camille Jordan, F-69622 Villeurbanne, France
[2] Univ Clermont Auvergne, Mines St Etienne, CNRS, UMR LIMOS 6158,Inst Henri Fayol, F-42023 St Etienne, France
关键词: Bagging;    CORT;    Density estimation trees;    Nonparametric estimation;    Patchwork copula;    Piecewise linear copula;    Quadratic program;   
DOI  :  10.1016/j.jmva.2021.104776
来源: Elsevier
PDF
【 摘 要 】

We construct the COpula Recursive Tree (CORT) estimator: a flexible, consistent, piecewise linear estimator of a copula, leveraging the patchwork copula formalization and various piecewise constant density estimators. While the patchwork structure imposes a grid, the CORT estimator is data-driven and constructs the (possibly irregular) grid recursively from the data, minimizing a chosen distance on the copula space. The addition of the copula constraints makes usual density estimators unusable, whereas the CORT estimator is only concerned with dependence and guarantees the uniformity of margins. Refinements such as localized dimension reduction and bagging are developed, analyzed, and tested through simulated data. (C) 2021 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2021_104776.pdf 2264KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次