期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:169
Improved loss estimation for a normal mean matrix
Article
Matsuda, Takeru1  Strawderman, William E.2 
[1] Univ Tokyo, Grad Sch Informat Sci & Technol, Tokyo, Japan
[2] Rutgers State Univ, Dept Stat & Biostat, New Brunswick, NJ USA
关键词: Loss estimation;    Matrix mean;    Reduced-rank regression;    Shrinkage estimator;    Singular value decomposition;   
DOI  :  10.1016/j.jmva.2018.10.001
来源: Elsevier
PDF
【 摘 要 】

We investigate improved loss estimation in the matrix mean estimation problem. Specifically, for estimators of a normal mean matrix, we consider estimation of the Frobenius loss. Based on the singular values of the observation, we develop loss estimators that dominate the unbiased loss estimator for a broad class of matrix mean estimators including the Efron-Morris estimator. This is an extension of the results of Johnstone (1988) for a normal mean vector. We also provide improved estimators of loss for reduced-rank estimators. Numerical results show the effectiveness of the proposed loss estimators. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2018_10_001.pdf 333KB PDF download
  文献评价指标  
  下载次数:14次 浏览次数:0次