期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:101
A van Trees inequality for estimators on manifolds
Article
Jupp, P. E.
关键词: Bayes risk;    Bias;    Cramer-Rao inequality;    Fisher information;    Hessian;    Proper dispersion model;    Tensor;   
DOI  :  10.1016/j.jmva.2010.03.007
来源: Elsevier
PDF
【 摘 要 】

Van Trees' Bayesian version of the Cramer-Rao inequality is generalised here to the context of smooth loss functions on manifolds and estimation of parameters of interest. This extends the multivariate van Trees inequality of Gill and Levit (1995) [R.D. Gill, B.Y. Levit, Applications of the van Trees inequality: a Bayesian Cramer-Rao bound, Bernoulli 1 (1995) 59-79]. In addition, the intrinsic Cramer-Rao inequality of Hendriks (1991) [H. Hendriks, A Cramer-Rao type lower bound for estimators with values in a manifold, J. Multivariate Anal. 38 (1991) 245-261] is extended to cover estimators which may be biased. The quantities used in the new inequalities are described in differential-geometric terms. Some examples are given. (C) 2010 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2010_03_007.pdf 364KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:0次