期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:146
A nonlinear aggregation type classifier
Article
Cholaquidis, Alejandro1  Fraiman, Ricardo1  Kalemkerian, Juan1  Llop, Pamela2,3 
[1] Univ Republ, Fac Ciencias, Ctr Matemat, Asuncion, Paraguay
[2] UNL CONICET, Inst Matemat Aplicada Litoral, Buenos Aires, DF, Argentina
[3] UNL, Fac Ingn Quim, Dept Matemat, Buenos Aires, DF, Argentina
关键词: Functional data;    Supervised classification;    Non-linear aggregation;   
DOI  :  10.1016/j.jmva.2015.09.022
来源: Elsevier
PDF
【 摘 要 】

We introduce a nonlinear aggregation type classifier for functional data defined on a separable and complete metric space. The new rule is built up from a collection of M arbitrary training classifiers. If the classifiers are consistent, then so is the aggregation rule. Moreover, asymptotically the aggregation rule behaves as well as the best of the M classifiers. The results of a small simulation are reported both, for high dimensional and functional data, and a real data example is analyzed. (C) 2015 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2015_09_022.pdf 696KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:0次