期刊论文详细信息
| JOURNAL OF MULTIVARIATE ANALYSIS | 卷:146 |
| A nonlinear aggregation type classifier | |
| Article | |
| Cholaquidis, Alejandro1  Fraiman, Ricardo1  Kalemkerian, Juan1  Llop, Pamela2,3  | |
| [1] Univ Republ, Fac Ciencias, Ctr Matemat, Asuncion, Paraguay | |
| [2] UNL CONICET, Inst Matemat Aplicada Litoral, Buenos Aires, DF, Argentina | |
| [3] UNL, Fac Ingn Quim, Dept Matemat, Buenos Aires, DF, Argentina | |
| 关键词: Functional data; Supervised classification; Non-linear aggregation; | |
| DOI : 10.1016/j.jmva.2015.09.022 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
We introduce a nonlinear aggregation type classifier for functional data defined on a separable and complete metric space. The new rule is built up from a collection of M arbitrary training classifiers. If the classifiers are consistent, then so is the aggregation rule. Moreover, asymptotically the aggregation rule behaves as well as the best of the M classifiers. The results of a small simulation are reported both, for high dimensional and functional data, and a real data example is analyzed. (C) 2015 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jmva_2015_09_022.pdf | 696KB |
PDF