期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:157
High-dimensional asymptotic behavior of the difference between the log-determinants of two Wishart matrices
Article
Yanagihara, Hirokazu1,2  Oda, Ryoya1  Hashiyama, Yusuke1,3  Fujikoshi, Yasunori1,2 
[1] Hiroshima Univ, Grad Sch Sci, Dept Math, 1-3-1 Kagamiyama, Higashihiroshima 7398626, Japan
[2] Hiroshima Univ, Stat Sci Res Core, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 7398626, Japan
[3] Osaka Prefectural Ibaraki High Sch, 12-1 Shinjo Cho, Ibaraki, Osaka 5670884, Japan
关键词: Canonical correlation analysis;    Consistency of information criterion;    High-dimensional asymptotic framework;    Information criterion;    Model selection;   
DOI  :  10.1016/j.jmva.2017.03.002
来源: Elsevier
PDF
【 摘 要 】

In this paper, we evaluate the asymptotic behavior of the difference between the log determinants of two random matrices distributed according to the Wishart distribution by using a high-dimensional asymptotic framework in which the size of the matrices and the degrees of freedom both approach infinity simultaneously. We consider two cases, depending whether a matrix is completely or partially included in another matrix. From the asymptotic behavior, we derive the condition needed to ensure consistency for a given log-likelihood-based information criterion for selecting variables in a canonical correlation analysis. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2017_03_002.pdf 546KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次