期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:174
Composite likelihood estimation for a Gaussian process under fixed domain asymptotics
Article
Bachoc, Francois1  Bevilacqua, Moreno2  Velandia, Daira3 
[1] Inst Math Toulouse, Toulouse, France
[2] Univ Valparaiso, Dept Estadist, Millennium Nucleus Ctr Discovery Struct Complex D, Valparaiso, Chile
[3] Univ Valparaiso, Dept Estadist, Valparaiso, Chile
关键词: Asymptotic normality;    Consistency;    Exponential model;    Fixed-domain asymptotics;    Gaussian processes;    Large data sets;    Microergodic parameters;    Pairwise composite likelihood;   
DOI  :  10.1016/j.jmva.2019.104534
来源: Elsevier
PDF
【 摘 要 】

We study the problem of estimating the covariance parameters of a one-dimensional Gaussian process with exponential covariance function under fixed-domain asymptotics. We show that the weighted pairwise maximum likelihood estimator of the microergodic parameter can be consistent or inconsistent. This depends on the range of admissible parameter values in the likelihood optimization. On the other hand, the weighted pairwise conditional maximum likelihood estimator is always consistent. Both estimators are also asymptotically Gaussian when they are consistent. Their asymptotic variances are larger or strictly larger than that of the maximum likelihood estimator. A simulation study is presented in order to compare the finite sample behavior of the pairwise likelihood estimators with their asymptotic distributions. For more general covariance functions, an additional inconsistency result is provided, for the weighted pairwise maximum likelihood estimator of a variance parameter. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2019_104534.pdf 508KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:1次