期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:171
Robust maximum L9-likelihood estimation of joint mean-covariance models for longitudinal data
Article
Xu, Lin1  Xiang, Sijia1  Yao, Weixin2 
[1] Zhejiang Univ Finance & Econ, Sch Data Sci, Hangzhou, Zhejiang, Peoples R China
[2] Univ Calif Riverside, Dept Stat, Riverside, CA 92521 USA
关键词: Joint mean-covariance models;    Longitudinal daaAlta analysis;    Maximum L-g-likelihood;    Modified Cholesky decomposition;   
DOI  :  10.1016/j.jmva.2019.01.001
来源: Elsevier
PDF
【 摘 要 】

A comprehensive longitudinal data analysis requires screening for unusual observations. Outliers or measurement errors might lead to considerable efficiency loss or even misleading results in longitudinal data inference. Via joint mean-covariance modelings (Pourahmadi, 2000; Zhang et al., 2015) and q-order entropy theory (Ferrari, 2010), we propose a maximum L-q-likelihood estimation for longitudinal data, which can yield robust and consistent estimators of the mean regression coefficients. An EM type algorithm is introduced to achieve both efficient and stable computation. The asymptotic properties of the proposed estimators are provided. Simulation studies and an application to Turkish anesthesiology data are used to show the effectiveness of the new approach. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2019_01_001.pdf 439KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次