期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:57
Strong consistency of Bayes estimates in stochastic regression models
Article
关键词: Bayes estimates;    stochastic regressor;    martingale;    system identification;    adaptive control;    dynamic model;    strongly unimodal;   
DOI  :  10.1006/jmva.1996.0030
来源: Elsevier
PDF
【 摘 要 】

Under minimum assumptions on the stochastic regressors, strong consistency of Bayes estimates is established in stochastic regression models in two cases: (1) When the prior distribution is discrete, the p.d.f. f of i.i.d. random errors is assumed to have finite Fisher information I=integral(-infinity)(infinity) (f')(2)/f dx < infinity; (2) for general priors, we assume f is strongly unimodal. The result can be considered as an application of a theorem of Doob to stochastic regression models. (C) 1996 Academic Press. Inc.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1006_jmva_1996_0030.pdf 518KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:0次