期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:97
Estimation of covariance matrices in fixed and mixed effects linear models
Article
Kubokawa, Tatsuya ; Tsai, Ming-Tien
关键词: covariance matrix;    decision theory;    estimation;    Haff identity;    improvement;    James-Stein estimator;    linear regression model;    minimaxity;    mixed effects model;    multivariate normal distribution;    Stein identity;    variance component;    Wishart distribution;   
DOI  :  10.1016/j.jmva.2005.11.004
来源: Elsevier
PDF
【 摘 要 】

The estimation of the covariance matrix or the multivariate components of variance is considered in the multivariate linear regression models with effects being fixed or random. In this paper, we propose a new method to show that usual unbiased estimators are improved on by the truncated estimators. The method is based on the Stein-Haff identity, namely the integration by parts in the Wishart distribution, and it allows us to handle the general types of scale-equivariant estimators as well as the general fixed or mixed effects linear models. (C) 2005 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2005_11_004.pdf 278KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:0次