期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:124
Schur2-concavity properties of Gaussian measures, with applications to hypotheses testing
Article
Pinelis, Iosif
关键词: Probability inequalities;    Geometric probability;    Gaussian measures;    Multivariate normal distribution;    Mixtures;    Majorization;    Stochastic ordering;    Schur convexity;    Hypothesis testing;    Asymptotic properties of tests;    Asymptotic relative efficiency;    p-mean tests;    Multivariate means;    Reflection groups;   
DOI  :  10.1016/j.jmva.2013.11.011
来源: Elsevier
PDF
【 摘 要 】

The main results imply that the probability P(Z is an element of A + theta) is Schur-concave/Schur-convex in (theta(2)(1),...,theta(2)(k)) provided that the indicator function of a set A in R-k is so, respectively; here, theta = (theta(1),...,theta(k)) is an element of R-k and Z is a standard normal random vector in R-k. Moreover, it is shown that the Schur-concavity/Schur-convexity is strict unless the set A is equivalent to a spherically symmetric set. Applications to testing hypotheses on multivariate means are given. (C) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2013_11_011.pdf 1536KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:0次