期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:128
Polar angle tangent vectors follow Cauchy distributions under spherical symmetry
Article
Cacoullos, T.
关键词: Multivariate Cauchy;    Spherical symmetry;    Component ratios distribution;    Angular distribution;    t-statistics;   
DOI  :  10.1016/j.jmva.2014.03.010
来源: Elsevier
PDF
【 摘 要 】

Let X = (X-1, ... , X-n)' follow a spherically or elliptically symmetric distribution centered at zero, and Y-i = Xi+1/X-1, Y = (Y-1, ... , Yn-1)'. It is shown that under spherical symmetry Y has a symmetric Cauchy distribution and under elliptical symmetry a general Cauchy distribution. Geometrically, Y is the tangent (or cotangent) vector of the polar angle theta(1). The simple case of one ratio is treated in Arnold and Brockett (1992), Jones (1999, 2008). Moreover, it is shown that root n - 1 cot theta(1) follows the t(n-1) distribution, so that the normal theory distributions of Student's t and correlation coefficient r hold under spherical symmetry. (C) 2014 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2014_03_010.pdf 419KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次