期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:165
Multivariate generalized Pareto distributions: Parametrizations, representations, and properties
Article
Rootzen, Holger1,2  Segers, Johan3  Wadsworth, Jennifer L.4 
[1] Chalmers Univ Technol, Math Sci, SE-41296 Gothenburg, Sweden
[2] Univ Gothenburg, SE-41296 Gothenburg, Sweden
[3] Catholic Univ Louvain, Inst Stat Biostat & Sci Actuarielles, Vole Roman Pays 20, B-1348 Louvain La Neuve, Belgium
[4] Univ Lancaster, Math & Stat, Fylde Coll, Lancaster, England
关键词: Exceedances;    Maxima;    Stable tail dependence function;    Tail copula;    Linear combination;   
DOI  :  10.1016/j.jmva.2017.12.003
来源: Elsevier
PDF
【 摘 要 】

Multivariate generalized Pareto distributions arise as the limit distributions of exceedances over multivariate thresholds of random vectors in the domain of attraction of a max stable distribution. These distributions can be parametrized and represented in a number of different ways. Moreover, generalized Pareto distributions enjoy a number of interesting stability properties. An overview of the main features of such distributions is given, expressed compactly in several parametrizations, giving the potential user of these distributions a convenient catalogue of ways to handle and work with generalized Pareto distributions. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2017_12_003.pdf 299KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:1次