期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:102
Improved transformed deviance statistic for testing a logistic regression model
Article
Taneichi, Nobuhiro1  Sekiya, Yuri2  Toyama, Jun3 
[1] Kagoshima Univ, Grad Sch Sci & Engn, Dept Math & Comp Sci, Kagoshima 8900065, Japan
[2] Hokkaido Univ, Kushiro, Hokkaido 0858580, Japan
[3] Hokkaido Univ, Grad Sch Informat Sci & Technol, Div Comp Sci, Sapporo, Hokkaido 0600814, Japan
关键词: Bartlett adjustment;    Deviance;    Edgeworth expansion;    Logistic regression;   
DOI  :  10.1016/j.jmva.2011.04.010
来源: Elsevier
PDF
【 摘 要 】

In logistic regression models, we consider the deviance statistic (the log likelihood ratio statistic) D as a goodness-of-fit test statistic. In this paper, we show the derivation of an expression of asymptotic expansion for the distribution of D under a null hypothesis. Using the continuous term of the expression, we obtain a Bartlett-type transformed statistic (D) over tilde that improves the speed of convergence to the chi-square limiting distribution of D. By numerical comparison, we find that the transformed statistic (D) over tilde performs much better than D. We also give a real data example of (D) over tilde being more reliable than D for testing a hypothesis. (C) 2011 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2011_04_010.pdf 545KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次