期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:112
Nonstationary modeling for multivariate spatial processes
Article
Kleiber, William1  Nychka, Douglas1 
[1] Natl Ctr Atmospher Res, Inst Math Appl Geosci, Geophys Stat Project, Boulder, CO 80307 USA
关键词: Cross-covariance;    Kernel smoother;    Local stationarity;    Matern;    Multivariate;    Nonstationary;    Spatial Gaussian process;   
DOI  :  10.1016/j.jmva.2012.05.011
来源: Elsevier
PDF
【 摘 要 】

We derive a class of matrix valued covariance functions where the direct and cross-covariance functions are Matern. The parameters of the Matern class are allowed to vary with location, yielding local variances, local ranges, local geometric anisotropies and local smoothnesses. We discuss inclusion of a nonconstant cross-correlation coefficient and a valid approximation. Estimation utilizes kernel smoothed empirical covariance matrices and a locally weighted minimum Frobenius distance that yields local parameter estimates at any location. We derive the asymptotic mean squared error of our kernel smoother and discuss the case when multiple field realizations are available. Finally, the model is illustrated on two datasets, one a synthetic bivariate one-dimensional spatial process, and the second a set of temperature and precipitation model output from a regional climate model. (C) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2012_05_011.pdf 1428KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次