期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:101
Robust estimation of periodic autoregressive processes in the presence of additive outliers
Article
Sarnaglia, A. J. Q.2  Reisen, V. A.2  Levy-Leduc, C.1 
[1] TelecomParisTech, LTCI, CNRS, F-75634 Paris 13, France
[2] Univ Fed Espirito Santo, Dept Estat, Vitoria, ES, Brazil
关键词: Additive outliers;    PAR model;    Periodicity;    Robustness;    Influence function;   
DOI  :  10.1016/j.jmva.2010.05.006
来源: Elsevier
PDF
【 摘 要 】

This paper suggests a robust estimation procedure for the parameters of the periodic AR (PAR) models when the data contains additive outliers. The proposed robust methodology is an extension of the robust scale and covariance functions given in, respectively, Rousseeuw and Croux (1993) [28], and Ma and Genton (2000) [23] to accommodate periodicity. These periodic robust functions are used in the Yule-Walker equations to obtain robust parameter estimates. The asymptotic central limit theorems of the estimators are established, and an extensive Monte Carlo experiment is conducted to evaluate the performance of the robust methodology for periodic time series with finite sample sizes. The quarterly Fraser River data was used as an example of application of the proposed robust methodology. All the results presented here give strong motivation to use the methodology in practical situations in which periodically correlated time series contain additive outliers. (c) 2010 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2010_05_006.pdf 641KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次