期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:146
Feature selection for functional data
Article
Fraiman, Ricardo1  Gimenez, Yanina2,3  Svarc, Marcela2,3 
[1] Univ Republ, Fac Ciencias, Ctr Matemat, Asuncion, Paraguay
[2] Univ San Andres, Dept Matemat, Buenos Aires, DF, Argentina
[3] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina
关键词: Variable selection;    Classification;    Regression;    Principal components;   
DOI  :  10.1016/j.jmva.2015.09.006
来源: Elsevier
PDF
【 摘 要 】

We herein introduce a general procedure to capture the relevant information from a functional data set in relation to a statistical method used to analyze the data, such as, classification, regression or principal components. The aim is to identify a small subset of functions that can better explain the model, highlighting its most important features. We obtain consistency results for our proposals. The computational aspects are analyzed, a heuristic stochastic algorithm is introduced and real data sets are studied. (C) 2015 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2015_09_006.pdf 693KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次