期刊论文详细信息
JOURNAL OF PURE AND APPLIED ALGEBRA 卷:224
Asymptotic invariants of ideals with Noetherian symbolic Rees algebra and applications to cover ideals
Article
Drabkin, Benjamin1  Guerrieri, Lorenzo2 
[1] Univ Nebraska, Lincoln, NE 68588 USA
[2] Univ Catania, Dipartimento Matemat & Informat, Viale A Doria 6, I-95125 Catania, Italy
关键词: Symbolic powers;    Symbolic defect;    Waldschimdt constant;    Monomial ideals;    Cover ideals of graphs;   
DOI  :  10.1016/j.jpaa.2019.05.008
来源: Elsevier
PDF
【 摘 要 】

Let I be an ideal whose symbolic Rees algebra is Noetherian. For m >= 1, the m-th symbolic defect, sdefect(I, m), of I is defined to be the minimal number of generators of the module I-(m)/I-(m). We prove that sdefect(I, m) is eventually quasi-polynomial as a function in m. We compute the symbolic defect explicitly for certain monomial ideals arising from graphs, termed cover ideals. We go on to give a formula for the Waldschmidt constant, an asymptotic invariant measuring the growth of the degrees of generators of symbolic powers, for ideals whose symbolic Rees algebra is Noetherian. (C) 2019 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jpaa_2019_05_008.pdf 466KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次