期刊论文详细信息
JOURNAL OF PURE AND APPLIED ALGEBRA | 卷:226 |
Separating invariants over finite fields | |
Article | |
Kemper, Gregor2  Lopatin, Artem1  Reimers, Fabian2  | |
[1] Univ Estadual Campinas, 651 Sergio Buarque Holanda, BR-13083859 Campinas, SP, Brazil | |
[2] Tech Univ Munich, Zentrum Math M11, Boltzmannstr 3, D-85748 Garching, Germany | |
关键词: Invariant theory; Separating invariants; Generators; Relations; Positive characteristic; Symmetric group; Multisymmetric polynomials; | |
DOI : 10.1016/j.jpaa.2021.106904 | |
来源: Elsevier | |
【 摘 要 】
We determine the minimal number of separating invariants for the invariant ring of a matrix group G <= GL(n)(F-q) over the finite field F-q. We show that this minimal number can be obtained with invariants of degree at most vertical bar G vertical bar n(q - 1). In the non-modular case this construction can be improved to give invariants of degree at most n(q - 1). As examples we study separating invariants over the field F-2 for two important representations of the symmetric group. (C) 2021 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jpaa_2021_106904.pdf | 422KB | download |