期刊论文详细信息
JOURNAL OF PURE AND APPLIED ALGEBRA 卷:226
Separating invariants over finite fields
Article
Kemper, Gregor2  Lopatin, Artem1  Reimers, Fabian2 
[1] Univ Estadual Campinas, 651 Sergio Buarque Holanda, BR-13083859 Campinas, SP, Brazil
[2] Tech Univ Munich, Zentrum Math M11, Boltzmannstr 3, D-85748 Garching, Germany
关键词: Invariant theory;    Separating invariants;    Generators;    Relations;    Positive characteristic;    Symmetric group;    Multisymmetric polynomials;   
DOI  :  10.1016/j.jpaa.2021.106904
来源: Elsevier
PDF
【 摘 要 】

We determine the minimal number of separating invariants for the invariant ring of a matrix group G <= GL(n)(F-q) over the finite field F-q. We show that this minimal number can be obtained with invariants of degree at most vertical bar G vertical bar n(q - 1). In the non-modular case this construction can be improved to give invariants of degree at most n(q - 1). As examples we study separating invariants over the field F-2 for two important representations of the symmetric group. (C) 2021 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jpaa_2021_106904.pdf 422KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次