期刊论文详细信息
JOURNAL OF PURE AND APPLIED ALGEBRA | 卷:207 |
Isogenies of elliptic curves and the Morava stabilizer group | |
Article | |
Behrens, Mark ; Lawson, Tyler | |
关键词: Morava stabilizer group; supersingular elliptic curves; quaternion algebras; | |
DOI : 10.1016/j.jpaa.2005.09.007 | |
来源: Elsevier | |
【 摘 要 】
Let S-2 be the p-primary second Morava stabilizer group, C a supersingular elliptic curve over F-p, O the ring of endomorphisms of C, and l a topological generator of Z(p)(x) (or Z(2)(x)/{+/- 1} if p = 2). We show that for p > 2 the group Gamma subset of O[1/l](x) of quasi-endomorphisms of degree a power of e is dense in S-2. For p = 2, we show that Gamma is dense in an index 2 subgroup of S2. (c) 2005 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jpaa_2005_09_007.pdf | 256KB | download |