期刊论文详细信息
JOURNAL OF PURE AND APPLIED ALGEBRA 卷:225
Symmetric decomposition of the associated graded algebra of an Artinian Gorenstein algebra
Article
Iarrobino, Anthony1  Marques, Pedro Macias2 
[1] Northeastern Univ, Dept Math, Boston, MA 02115 USA
[2] Univ Evora, Ctr Invest Matemat & Aplicacoes, Inst Invest & Formacao Avancada, Dept Matemdt,Escola Ciencias & Tecnol, Rua Romao Ramalho 59, P-7000671 Evora, Portugal
关键词: Artinian Gorenstein;    Local algebra;    Gorenstein sequence;    Symmetric decomposition;    Deformation;    Normal form of dual generator;   
DOI  :  10.1016/j.jpaa.2020.106496
来源: Elsevier
PDF
【 摘 要 】

We study the symmetric subquotient decomposition of the associated graded algebras A* of a non-homogeneous commutative Artinian Gorenstein (AG) algebra A. This decomposition arises from the stratification of A* by a sequence of ideals A* = C-A (0) superset of C-A (1) superset of ... whose successive quotients Q(a) = C(a)/C(a + 1) are reflexive A* modules. These were introduced by the first author [17,18], developed in the Memoir [49], and have been used more recently by several groups, especially those interested in short Gorenstein algebras, and in the scheme length (cactus rank) of forms. For us a Gorenstein sequence is an integer sequence H occurring as the Hilbert function H = H(A) for an AG algebra A, that is not necessarily homogeneous. Such a Hilbert function H(A) is the sum of symmetric non-negative sequences H-A(a) = H(Q(A)(a)), each having center of symmetry (j - a)/2 where j is the socle degree of A: we call these the symmetry conditions, and the decomposition D(A) = (H-A (0), H-A (1), ...) the symmetric decomposition of H(A) (Theorem 1.4). We here study which sequences may occur as the summands H-A(a): in particular we construct in a systematic way examples of AG algebras A for which H-A(a) can have interior zeroes, as H-A(a) = (0, s, 0, ..., 0, s, 0). We also study the symmetric decomposition sets D(A), and in particular determine which sequences HA(a) can be non-zero when the dual generator is linear in a subset of the variables (Theorem 4.1). Several groups have studied exotic summands of the Macaulay dual generator F: these are summands that involve more successive variables than would be expected from the symmetric decomposition of the Hilbert function H(A). Studying these, we recall a normal form for the Macaulay dual generator of an AG algebra that has no exotic summands (Theorem 2.7). We apply this to Gorenstein algebras that are connected sums (Section 2.4). We give throughout many examples and counterexamples, and conclude with some open questions about symmetric decomposition. (C) 2020 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jpaa_2020_106496.pdf 993KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次