期刊论文详细信息
JOURNAL OF PURE AND APPLIED ALGEBRA 卷:224
The graded structure of algebraic Cuntz-Pimsner rings
Article
Lannstrom, Daniel1 
[1] Blekinge Inst Technol, Dept Math & Nat Sci, SE-37179 Karlskrona, Sweden
关键词: Group graded ring;    Epsilon-strongly graded ring;    Cuntz-Pimsner ring;    Leavitt path algebra;    Corner skew Laurent polynomial ring;   
DOI  :  10.1016/j.jpaa.2020.106369
来源: Elsevier
PDF
【 摘 要 】

Algebraic Cuntz-Pimsner rings are naturally Z-graded rings that generalize corner skew Laurent polynomial rings, Leavitt path algebras and unperforated Z-graded Steinberg algebras. In this article, we characterize strongly, epsilon-strongly and nearly epsilon-strongly Z-graded algebraic Cuntz-Pimsner rings up to graded isomorphism. We recover two results by Hazrat on when corner skew Laurent polynomial rings and Leavitt path algebras are strongly graded. As a further application, we characterize noetherian and artinian corner skew Laurent polynomial rings. (C) 2020 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jpaa_2020_106369.pdf 580KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:1次