期刊论文详细信息
JOURNAL OF PURE AND APPLIED ALGEBRA 卷:225
K3 surfaces with 9 cusps in characteristic p
Article
Katsura, Toshiyuki1  Schuett, Matthias2,3 
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, Tokyo 1538914, Japan
[2] Leibniz Univ Hannover, Inst Algebra Geometrie, Welfengarten 1, D-30167 Hannover, Germany
[3] Leibniz Univ Hannover, Riemann Ctr Geometry & Phys, Appelstr 2, D-30167 Hannover, Germany
关键词: K3 surface;    Cusp;    Abelian surface;    Supersingular;    Automorphism;   
DOI  :  10.1016/j.jpaa.2020.106558
来源: Elsevier
PDF
【 摘 要 】

We study K3 surfaces with 9 cusps, i.e. 9 disjoint A(2) configurations of smooth rational curves, over algebraically closed fields of characteristic p not equal 3. Much like in the complex situation studied by Barth, we prove that each such surface admits a triple covering by an abelian surface. Conversely, we determine which abelian surfaces with order three automorphisms give rise to K3 surfaces. We also investigate how K3 surfaces with 9 cusps hit the supersingular locus. (C) 2020 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jpaa_2020_106558.pdf 382KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次