期刊论文详细信息
JOURNAL OF PURE AND APPLIED ALGEBRA 卷:225
Almost complete intersection binomial edge ideals and their Rees algebras
Article
Jayanthan, A., V1  Kumar, Arvind2  Sarkar, Rajib1 
[1] Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India
[2] Indian Inst Technol, Dept Math, New Delhi 110016, India
关键词: Binomial edge ideal;    Syzygy;    Rees algebra;    Betti number;   
DOI  :  10.1016/j.jpaa.2020.106628
来源: Elsevier
PDF
【 摘 要 】

Let G be a simple graph on n vertices and J(G) denote the binomial edge ideal of G in the polynomial ring S = K[x(1) , . . . , x(n), y(1) , . . . , y(n)]. In this article, we compute the second graded Betti numbers of J(G), and we obtain a minimal presentation of it when G is a tree or a unicyclic graph. We classify all graphs whose binomial edge ideals are almost complete intersection, prove that they are generated by a d-sequence and that the Rees algebra of their binomial edge ideal is Cohen-Macaulay. We also obtain an explicit description of the defining ideal of the Rees algebra of those binomial edge ideals. (C) 2020 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jpaa_2020_106628.pdf 499KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次