期刊论文详细信息
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 卷:491
Learning magnetization dynamics
Article
Kovacs, Alexander1  Fischbacher, Johann1  Oezelt, Harald1  Gusenbauer, Markus1  Exl, Lukas2  Bruckner, Florian3  Suess, Dieter3  Schrefl, Thomas1 
[1] Danube Univ Krems, Dept Integrated Sensor Syst, Viktor Kaplan Str 2, A-2700 Wiener Neustadt, Austria
[2] Wolfgang Pauli Inst, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[3] Univ Vienna, Christian Doppler Lab Adv Magnet Sensing & Mat, Fac Phys, Wahringer Str 17, A-1090 Vienna, Austria
关键词: Micromagnetics;    Magnetic sensors;    Machine learning;    Model order reduction;   
DOI  :  10.1016/j.jmmm.2019.165548
来源: Elsevier
PDF
【 摘 要 】

Deep neural networks are used to model the magnetization dynamics in magnetic thin film elements. The magnetic states of a thin film element can be represented in a low dimensional space. With convolutional autoencoders a compression ratio of 1024:1 was achieved. Time integration can be performed in the latent space with a second network which was trained by solutions of the Landau-Lifshitz-Gilbert equation. Thus the magnetic response to an external field can be computed quickly.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmmm_2019_165548.pdf 7908KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次